Generating steganographic images via adversarial training
نویسندگان
چکیده
Adversarial training has proved to be competitive against supervised learning methods on computer vision tasks. However, studies have mainly been confined to generative tasks such as image synthesis. In this paper, we apply adversarial training techniques to the discriminative task of learning a steganographic algorithm. Steganography is a collection of techniques for concealing the existence of information by embedding it within a non-secret medium, such as cover texts or images. We show that adversarial training can produce robust steganographic techniques: our unsupervised training scheme produces a steganographic algorithm that competes with state-of-the-art steganographic techniques. We also show that supervised training of our adversarial model produces a robust steganalyzer, which performs the discriminative task of deciding if an image contains secret information. We define a game between three parties, Alice, Bob and Eve, in order to simultaneously train both a steganographic algorithm and a steganalyzer. Alice and Bob attempt to communicate a secret message contained within an image, while Eve eavesdrops on their conversation and attempts to determine if secret information is embedded within the image. We represent Alice, Bob and Eve by neural networks, and validate our scheme on two independent image datasets, showing our novel method of studying steganographic problems is surprisingly competitive against established steganographic techniques.
منابع مشابه
ste-GAN-ography: Generating Steganographic Images via Adversarial Training
Adversarial training has proved to be competitive against supervised learning methods on computer vision tasks. However, studies have mainly been confined to generative tasks such as image synthesis. In this paper, we apply adversarial training techniques to the discriminative task of learning a steganographic algorithm. Steganography is a collection of techniques for concealing the existence o...
متن کاملSynchronization Detection and Recovery of Steganographic Messages with Adversarial Learning
As a means for secret communication, steganography aims at concealing a message within a medium such that the presence of the hidden message can hardly be detected. In computer vision tasks, adversarial training has become a competitive learning method to generate images. However, the generative tasks are confronted with great challenge on synthesizing images. This paper studies the mechanism o...
متن کاملCNN Based Adversarial Embedding with Minimum Alteration for Image Steganography
Historically, steganographic schemes were designed in a way to preserve image statistics or steganalytic features. Since most of the state-of-the-art steganalytic methods employ a machine learning (ML) based classifier, it is reasonable to consider countering steganalysis by trying to fool the ML classifiers. However, simply applying perturbations on stego images as adversarial examples may lea...
متن کاملGenerating Images Part by Part with Composite Generative Adversarial Networks
Image generation remains a fundamental problem in artificial intelligence in general and deep learning in specific. The generative adversarial network (GAN) was successful in generating high quality samples of natural images. We propose a model called composite generative adversarial network, that reveals the complex structure of images with multiple generators in which each generator generates...
متن کاملSteganographic Generative Adversarial Networks
Steganography is collection of methods to hide secret information (“payload”) within non-secret information (“container”). Its counterpart, Steganalysis, is the practice of determining if a message contains a hidden payload, and recovering it if possible. Presence of hidden payloads is typically detected by a binary classifier. In the present study, we propose a new model for generating image-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017